

# **SMPS Specification**

LSP030-24V

| 1.1 | Input | Charac | teristics |
|-----|-------|--------|-----------|
|-----|-------|--------|-----------|

AC input voltage rating AC input voltage range AC input frequency range Input current Input Power Power factor Efficiency

220Vac 200Vac - 240Vac 47Hz ~ 63Hz 0.34A 30W Max. 0.5 80% Min



| 1.2 Output Characteristics     |           |
|--------------------------------|-----------|
| Output Voltage                 | 24.0V     |
| Rated load current             | 1.1A      |
| MAX load current               | 1.3A      |
| Rated Output Power             | 26W       |
| Min. load current              | 100mA     |
| Output Tolerance               | ±5%       |
| Ripple and Noise               | 1000mVp-p |
|                                |           |
| 1.3 Performance Specifications |           |

# 1.3 Performance Specifications

Line Regulation Load Regulation

#### **1.4 Protection Features**

Over Current Protection Short Circuit Protection Over Voltage or Load Protection Over Temperature Protection

# 1.5 Environments

| Operating Temperature |  |
|-----------------------|--|
| Storage Temperature   |  |
| Operating Humidity    |  |
| Storage Humidity      |  |

# 1.6 Dielectric Withstand Voltage (Hi-Pot)

condition : non operating Test Point : primary to secondary

# 1.7 Insulation Resistance

condition : non operating Test Point : primary to secondary Output shut down with auto-recovery Output shut down with auto-recovery Output shut down with auto-recovery Output shut down with auto-recovery

-20℃ to +50℃ -30℃ to +70℃ 20% to 90% R.H. 0% to 95% R.H.

±5%

±5%

3.0KVac, 10mA, 3Sec

Greater than 100MΩ at 500 VDC

### 2 Performance Evaluation

This session presents the test results of SMPS module up to data. Results on inrush current and safety test are not included and will be added when they become available. Overall, the module meets design specifications.

#### 2.1 Input Characteristics

2.1. 1 Input current and Standby power The module was tested at different input voltages (from 200Vac to 240Vac)

| Standby power at min. load |           |           |           |
|----------------------------|-----------|-----------|-----------|
| Input Voltage              | 200V/60Hz | 220V/60Hz | 240V/60Hz |
| Pin (mW)                   | 1.77W     | 1.79W     | 1.82W     |
| Input current at full load |           |           |           |
| Input Voltage              | 200V/60Hz | 220V/60Hz | 240V/60Hz |
| Input Current (A)          | 0.28A     | 0.27A     | 0.25A     |
| Efficiency                 |           |           |           |
| Input Voltage              | 200V/60Hz | 220V/60Hz | 240V/60Hz |
| Input Power (W)            | 34.7W     | 34.5W     | 34.1W     |
| Output Power (W)           | 30W       | 30W       | 30W       |
| Power factor               | 0.6       | 0.58      | 0.57      |
| Efficiency (%)             | 86%       | 87%       | 88%       |
|                            |           |           |           |

### 2.2 Output Characteristics

2.2.1 Line Regulation & Load Regulation

| Input Voltaga | Output Voltage (V) |           |          |
|---------------|--------------------|-----------|----------|
| mput voltage  | Min Load           | Nor. Load | Max Load |
| 200V/60Hz     | 24.10V             | -         | 24.00V   |
| 220V/60Hz     | 24.10V             | -         | 24.00V   |
| 240V/60Hz     | 24.10V             | -         | 24.00V   |

#### 2.2.2 Ripple & Noise

Ripple & Noise measure results

| Input Voltago | Ripple & No | oise (mV) | Remark |
|---------------|-------------|-----------|--------|
| input voltage | Min Load    | Max Load  |        |
| 200V/60Hz     | -           | 200mV     |        |
| 240V/60Hz     | _           | 220mV     |        |

Note: Ripple & noise were measured at DC Cable end with a 0.1uF/50V ceramic cap connected in parallel with a 47uF/50V Electrolytic cap. Bandwidth was limited to 20MHz.

#### 2.3 Protections

2.3.1 Over Current Protection (OCP)

The power supply will shut down auto-recovery when output current exceeds up load 100%, and it should recover when the over current condition is removed.

## 3 load Characteristic Curve





#### 5 Case size



